Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 92
1.
J Hazard Mater ; 470: 134175, 2024 May 15.
Article En | MEDLINE | ID: mdl-38574662

Emerging organic photoelectrochemical transistors (OPECTs) with inherent amplification capabilities, good biocompatibility and even self-powered operation have emerged as a promising detection tool, however, they are still not widely studied for pollutant detection. In this paper, a novel OPECT dual-mode aptasensor was constructed for the ultrasensitive detection of di(2-ethylhexyl) phthalate (DEHP). MXene/In2S3/In2O3 Z-scheme heterojunction was used as a light fuel for ion modulation in sensitive gated OPECT biosensing. A transistor system based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) converted biological events associated with photosensitive gate achieving nearly a thousand-fold higher current gain at zero bias voltage. This work quantified the target DEHP by aptamer-specific induction of CRISPR-Cas13a trans-cutting activity with target-dependent rolling circle amplification as the signal amplification unit, and incorporated the signal changes strategy of biocatalytic precipitation and TMB color development. Combining OPECT with the auxiliary validation of colorimetry (CM), high sensitivity and accurate detection of DEHP were achieved with a linear range of 0.1 pM to 200 pM and a minimum detection limit of 0.02 pM. This study not only provides a new method for the detection of DEHP, but also offers a promising prospect for the gating and application of the unique OPECT.


Biosensing Techniques , Diethylhexyl Phthalate , Electrochemical Techniques , Transistors, Electronic , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , CRISPR-Cas Systems , Diethylhexyl Phthalate/chemistry , Diethylhexyl Phthalate/analysis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Limit of Detection , Nucleic Acid Amplification Techniques , Polystyrenes/chemistry , Thiophenes , Water Pollutants, Chemical/analysis
2.
J Colloid Interface Sci ; 661: 815-830, 2024 May.
Article En | MEDLINE | ID: mdl-38330654

Piezoelectric materials can generate the built-in electric field under ultrasound assistance, which is beneficial to the separation of the photogenerated electron-hole pairs in photocatalysis. Meanwhile, the ultrasound stress usually leads to accelerate electron transfer and enhance catalytic activity. Thus, piezo-photocatalysis technique is believed to be one of the effective techniques for organic pollutant degradation. In this work, a binary piezoelectric integrated piezo-photocatalytic Z-Scheme heterojunction with bismuth ferrite (BFO) and bismuth oxycarbonate (Bi2O2CO3, BOC) based on the in situ production of Bi2O2CO3 on Bi25FeO40 surface in dichloromethane, where Bi25FeO40 was employed as piezoelectric materials and Bi source, CO2 dissolved in dichloromethane was used as carbon source. Under 60 min ultrasound and visible light irradiation, the optimal BFO/BOC presented a higher piezo-photocatalytic tetracycline (TC) degradation rate (95 %) than Bi25FeO40 (30 %) and Bi2O2CO3 (17 %). Moreover, the optimal BFO/BOC illustrated higher piezo-photocatalytic TC degradation rate under ultrasound and visible light irradiation than that under visible light condition and ultrasound condition, respectively. These results strongly demonstrated the synergistically piezo-photocatalytic degradation of TC by BFO and BOC. This work not only provides a novel piezo-photocatalyst for pollutant degradation, but also provides a novel method to prepare Bi2O2CO3-based piezo-photocatalytic composite catalyst.

3.
Anal Chem ; 96(5): 1948-1956, 2024 02 06.
Article En | MEDLINE | ID: mdl-38265884

Organic electrochemical transistors with signal amplification and good stability are expected to play a more important role in the detection of environmental pollutants. However, the bias voltage at the gate may have an effect on the activity of vulnerable biomolecules. In this work, a novel organic photoelectrochemical transistor (OPECT) aptamer biosensor was developed for di(2-ethylhexyl) phthalate (DEHP) detection by combining photoelectrochemical analysis with an organic electrochemical transistor, where MXene/Bi2S3/CdIn2S4 was employed as a photoactive material, target-dependent DNA hybridization chain reaction was used as a signal amplification unit, and Ru(NH3)63+ was selected as a signal enhancement molecule. The poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based OPECT biosensor modulated by the MXene/Bi2S3/CdIn2S4 photosensitive material achieved a high current gain of nearly a thousand times at zero bias voltage. The developed signal-on OPECT sensing platform realized sensitive and specific detection of DEHP, with a detection range of 1-200 pM and a minimum detection limit of 0.24 pM under optimized experimental conditions, and its application to real water samples was also evaluated with satisfactory results. Hence, the construction of this OPECT biosensing platform not only provides a promising tool for the detection of DEHP but also reveals the great potential of the OPECT application for the detection of other environmental toxins.


Biosensing Techniques , Diethylhexyl Phthalate , Nitrites , Transition Elements , Electrochemical Techniques/methods , Biosensing Techniques/methods , Oligonucleotides , Limit of Detection
4.
Environ Pollut ; 341: 122942, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-37972681

Bi/BiOI/BiOCl composite photocatalyst was constructed by one-step stirring approach at ambient environment to remove of tetracycline (TC) antibiotics via photodegradation in aqueous medium. A systematic discussion of the architecture, composition, formation, photochemical performance and photocatalytic activity of Bi/BiOI/BiOCl was carried out. By adjusting the experimental conditions, it was found that the Bi/BiOI/BiOCl photocatalyst obtained by using 0.7 mmol NaBH4, I/Cl = 5% and reacting for 6 h had the greatest removal performance. Under visible light irradiation, the photocatalytic degradation efficiency of TC reached 90.3% within 60 min, surpassing that of single BiOCl and BiOI. Through the active species removal experiment, it was determined that •O2- made a primary contribution to the photocatalytic degradation process. Moreover, the formation of Z-scheme heterojunction in Bi/BiOI/BiOCl was discussed, analyzing the photocatalytic mechanism and TC degradation pathway. The ecological toxicity of TC solution before and after degradation to rice seedlings was preliminarily tested. This study provides an idea for one-step synthesis of bismuth-based composite photocatalysts, with potential applications in the photocatalytic degradation of antibiotics.


Anti-Bacterial Agents , Tetracycline , Catalysis , Anti-Bacterial Agents/chemistry , Tetracycline/chemistry , Light , Photolysis
5.
Small ; 20(15): e2306365, 2024 Apr.
Article En | MEDLINE | ID: mdl-38009777

Oxygen vacancy defects (OVs) are one of the main strategies for nanomaterials modification to improve the photoactivity, but current methods for fabricating OVs are usually complicated and harsh. It is important to develop simple, rapid, safe, and mild methods to fabricate OVs. By studying the effects of different weak reducing agents, the concentration of the reducing agent and the reaction time on fabrication of OVs, it is found that L-ascorbic acid (AA) gently and rapidly induces the increase of OVs in Bi4O5Br2 at room temperature. The increased OVs not only improve the adsorption of visible light, but also enhance the photocurrent response. Based on this, the preparation of OVs in Bi4O5Br2 is employed to the development of a photoelectrochemical biosensor for the detection of DNA demethylase of methyl-CpG binding domain protein 2 (MBD2). The biosensor shows a wide linear range of 0.1-400 ng mL-1 and a detection limit as low as 0.03 ng mL-1 (3σ). In addition, the effect of plasticizers on MBD2 activity is evaluated using this sensor. This work not only provides a novel method to prepare OVs in bismuth rich materials, but also explores a new novel evaluation tool for studying the ecotoxicological effects of contaminants.


Biosensing Techniques , Nanostructures , Ascorbic Acid , Oxygen , DNA , Light , Biosensing Techniques/methods
6.
Chemosphere ; 350: 141046, 2024 Feb.
Article En | MEDLINE | ID: mdl-38154674

As a kind of plasticizer, butyl benzyl phthalate (BBP) presents a serious hazard to the ecosystem. Therefore, there is a strong need for an effective technique to eliminate the risk of BBP. In this work, a new photocatalyst of Bi/Bi2O2CO3/Bi2S3 with an S-scheme heterojunction was synthesized using Bi(NO3)3 as the Bi source, Na2S as the S source, and DMF as the carbon source and reductant. Numerous techniques have been used to characterize Bi/Bi2O2CO3/Bi2S3, such as scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The improved photoactivity of Bi/Bi2O2CO3/Bi2S3 was evaluated by photoelectrochemical response, electrochemical impedance spectroscopy, photoluminescence, UV-Vis diffuse reflectance spectroscopy, and electrochemical Mott Schottky spectroscopy. The enhanced photocatalytic activity of this composite for BBP degradation under simulated sunlight irradiation could be attributed to the surface plasmon resonance effect of Bi metal and the heterojunction structure of Bi2O2CO3 and Bi2S3. The degradation rate of Bi/Bi2O2CO3/Bi2S3 was 85%, which was 4.52 and 1.52 times that of Bi2O2CO3 and Bi2S3, respectively. The prepared photocatalyst possessed good stability and reproducibility in eliminating BBP. The improved photocatalytic activity of Bi/Bi2O2CO3/Bi2S3 was demonstrated with the formation of an S-scheme heterojunction, and the degradation mechanism was discussed with a liquid chromatograph mass spectrometer.


Ecosystem , Phthalic Acids , Sunlight , Reproducibility of Results , Carbon
7.
Anal Chim Acta ; 1284: 341989, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37996156

BACKGROUND: Histone deacetylate Sirt1 has been involved in many important biological processes and is closely related to the occurrence and development of many diseases. Therefore, the accurate detection of Sirt1 is of great significance for the diagnosis and treatment of diseases caused by Sirt1 and the development of related drugs. RESULTS: In this work, a photoelectrochemical biosensor was developed for Sirt1 detection based on the NAD + mediated Sirt1 recognition and E. Coli DNA ligase activity. CuO-BiVO4p-n heterojunction was employed as the photoactive material, rolling circle amplification (RCA), hybridization chain reaction (HCR) and AgNCs were used as triple signal amplifications. As a bifunctional cofactor, NAD+ played a crucial role for Sirt1 detection, where the peptide deacetylation catalyzed by Sirt1 consumed NAD+, and the decreased amount of NAD + inhibited the activity of E. Coli DNA ligase, leading to the failure on RCA reaction, and improving the HCR reaction. Finally, AgNCs were generated using C-rich DNA as carrier. The surface plasmon effect of AgNCs and its heterojunction with CuO and BiVO4 accelerated the transfer rate of photogenerated carriers and improved the photocurrent signal. When the detection range was 0.001-200 nM, the detection limit of the biosensor was 0.76 pM (S/N = 3). SIGNIFICANCE: The applicability of the method was evaluated by studying the effects of known inhibitors nicotinamide and environmental pollutant halogenated carbazole on Sirt1 enzyme activity. The results showed that this method can be used as a new platform for screening Sirt1 enzyme inhibitors, and also provided a new biomarker for evaluating the ecotoxicological effects of environmental pollutants.


Biosensing Techniques , NAD , Sirtuin 1/genetics , Escherichia coli/genetics , Biosensing Techniques/methods , DNA Ligases , Limit of Detection , Electrochemical Techniques/methods
8.
Talanta ; 262: 124670, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37245429

A novel photoelectrochemical (PEC) biosensor for the detection of DNA demethylase MBD2 was developed based on Bi4O5Br2-Au/CdS photosensitive material. Bi4O5Br2 was firstly modified with gold nanoparticles (AuNPs), following with the modification onto the ITO electrode with CdS to realize the strong photocurrent response as a result of AuNPs had good conductibility and the matched energy between CdS and Bi4O5Br2. In the presence of MBD2, double-stranded DNA (dsDNA) on the electrode surface was demethylated, which triggered the digestion activity of endonuclease HpaII to cleave dsDNA and induced the further cleavage of the dsDNA fragment by exonuclease III (Exo III), causing the release of biotin labeled dsDNA and inhibiting the immobilization of streptavidin (SA) onto the electrode surface. As a results, the photocurrent was increased greatly. However, in the absence of MBD2, HpaII digestion activity was inhibited by DNA methylation modification, which further caused the failure in the release of biotin, leading to the successful immobilization of SA onto the electrode to realize a low photocurrent. The sensor had a detection of 0.3-200 ng/mL and a detection limit was 0.09 ng/mL (3σ). The applicability of this PEC strategy was assessed by studying the effect of environmental pollutants on MBD2 activity.


Biosensing Techniques , Metal Nanoparticles , Gold , Endonucleases , Biotin , Electrochemical Techniques/methods , DNA/genetics , Biosensing Techniques/methods , Digestion , Limit of Detection
9.
Chemosphere ; 331: 138768, 2023 Aug.
Article En | MEDLINE | ID: mdl-37127194

2D Ag/BiOCl/Bi2O2CO3 S-scheme heterojunction was prepared with oxygen vacancy (OVs) via one-pot hydrothermal method. The XRD and XPS analysis indicated the synthesized sample contained Ag nanoparticles (AgNPs) instead of Ag ions. The SEM and HRTEM pictures showed that BiOCl/Bi2O2CO3 nanosheets were modified with AgNPs. Compared with AgNPs, BiOCl, and Bi2O2CO3, Ag/BiOCl/Bi2O2CO3 exhibited highly photocatalytic inactivation of pathogenic fungi (Fusarium graminearum) due to the wide light absorption range and S-scheme heterojunction structure, which improved the production and transfer of photogenerated carrier, and enhanced the separation of photogenerated e-/h+ pairs. In addition, the improved photocatalytic disinfection against Fusarium graminearum of Ag/BiOCl/Bi2O2CO3 was verified in Sedeveria Letizia plant. Furthermore, active species capture assay and ESR experiments disclosed the involvement of OVs, h+, ∙O2-, ∙OH, and -for Fusarium graminearum destruction during photocatalysis process. The S-scheme heterojunction was proved via oxygen vacancy, which was extensively beneficial to increase charge transmission and separation efficiency. Our work proposed Ag/BiOCl/Bi2O2CO3 was an efficient and ecological fungicide to inactive Fusarium graminearum in vitro and vivo for crop disease.


Disinfection , Metal Nanoparticles , Silver/pharmacology , Oxygen
10.
Environ Pollut ; 327: 121550, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-37019263

A novel noble-metal-free ternary Bi/Bi2S3/Bi2WO6 S-scheme heterojunction and Schottky junction was successfully synthesized by one-pot solvothermal method. UV-Vis spectroscopy showed improved light absorption in the ternary composite structure. Electrochemical impedance spectroscopy and photoluminescence spectroscopy confirmed the reduced interfacial resistivity and photogenerated charge recombination rate of the composites. Using oxytetracycline (OTC) as model pollutant, Bi/Bi2S3/Bi2WO6 presented high photocatalytic activity towards OTC degradation, where the removal rate of Bi/Bi2S3/Bi2WO6 was 1.3 and 4.1 times higher than that of Bi2WO6 and Bi2S3 under visible light irradiation in 15 min, respectively. The excellent visible photocatalysis activity was attributed to the SPR effect of metal Bi and the direct S-scheme heterojunction of Bi2S3 and Bi2WO6 with the matched energy band structure, which led to the increased electron transfer rate and high separation efficiency of the photogenerated election-hole pairs. After seven cycles, the degradation efficiency for 30 ppm OTC with Bi/Bi2S3/Bi2WO6 only decreased 20.4%. In the degradation solution, the composite photocatalyst leached only 16 ng/L Bi and 26 ng/L W of metal with high photocatalytic stability. Moreover, free radical quenching experiment and electron spin-resonance spectroscopy experiment revealed that ·O2-, 1O2, h+ and ·OH played crucial roles in the photocatalytic degradation of OTC. Based on the analysis of high performance liquid chromatography-mass spectrometry for the intermediates in the degradation process, the degradation pathway was provided. Finally, combined with ecotoxicological effect analysis, the decreased toxicity of OTC after degradation towards rice seedlings was confirmed.


Oxytetracycline , Anti-Bacterial Agents , Light , Electron Transport , Chromatography, High Pressure Liquid
11.
Anal Chim Acta ; 1251: 341011, 2023 Apr 22.
Article En | MEDLINE | ID: mdl-36925312

As an important epigenetic modification, 5-carboxycytosine (5caC) played an important role in gene regulation, cell differentiation and growth. 5caC existed in many cells and tissues, but it was highly similar to the structure of other cytosine derivatives and had less content in the genome. Therefore, it was urgent to develop a sensitive and highly selective trace biosensor to detect 5caC. A novel photoelectrochemical biosensor was fabricated for 5-carboxy-2'-deoxycytidine-5'-triphosphate (5cadCTP) detection, where SnS2@Ti3C2 nanocomposite was employed as photoactive material, polyethyleneimine was used as 5cadCTP recognition and capture reagent, and Ru(NH3)63+ was used as photosensitizer for signal amplification. Due the good conductivity of Ti3C2 MXene and the matched energy band between Ti3C2 MXene and SnS2, SnS2@Ti3C2 nanocomposite presented strong photoactivity, which was beneficial to the high detection sensitivity. For specific recognition of 5cadCTP, the covalent interaction of -NH2 in 5cadCTP with -COOH on the substrate electrode was used, which was beneficial to the high detection selectivity. A broad linear relationship between photocurrent and 5cadCTP concentration was observed ranging from 1 pM to 0.2 µM. The low detection limit of 260 fM was achieved. The developed method has high detection specificity and can even distinguish 5caC with its derivatives. In addition, the applicability was evaluated by detecting the content change of 5caC in the genomic DNA of rice seedlings after cultured with environmental pollutants. This work provides a novel platform for 5cadCTP detection, and it can also be applied to detect other cytosine derivatives with suitable recognition strategies.


Biosensing Techniques , Titanium , Titanium/chemistry , Biosensing Techniques/methods , Cytosine , Antibodies , DNA/chemistry , Limit of Detection , Electrochemical Techniques/methods
12.
Chemosphere ; 324: 138357, 2023 May.
Article En | MEDLINE | ID: mdl-36898443

Bi2O2CO3/Bi2S3 heterojunction was prepared by one-step hydrothermal method, where Bi(NO3)3 was employed as Bi source, Na2S was used as a sulfur source, and CO(NH2)2 was adopted as C source. The load of Bi2S3 was adjusted by changing the content of Na2S. The prepared Bi2O2CO3/Bi2S3 illustrated strong photocatalytic activity towards dibutyl phthalate (DBP) degradation. The degradation rate was 73.6% under the irradiation of visible light for 3 h, which were 3.5 and 1.87 times for Bi2O2CO3 and Bi2S3, respectively. In addition, the mechanism for the enhanced photoactivity was investigated. After combined with Bi2S3, the formed heterojunction structure inhibited the recombination of photogenerated electron-hole pair, improved the visible light adsorption, and accelerated the migration rate of the photogenerated electron. As a result, analysis of the radical formation and the energy band structure revealed that Bi2O2CO3/Bi2S3 was consistent with the S-scheme heterojunction model. The S-scheme heterojunction allowed the Bi2O2CO3/Bi2S3 to possess high photocatalytic activity. The prepared photocatalyst presented acceptable cycle application stability. This work not only develops a facile one-step synthesis technique for Bi2O2CO3/Bi2S3, and also provides a good platform for the degradation of DBP.


Dibutyl Phthalate , Electrons , Adsorption , Light
13.
Biosens Bioelectron ; 222: 115015, 2023 Feb 15.
Article En | MEDLINE | ID: mdl-36529055

Taking advantages of the catalytic activity of METTL3/METTL14 protein towards adenine methylation in RNA sequence and the specific digestion activity of MazF protein towards unmethylated RNA sequence containing ACA bases, a novel photoelectrochemical biosensor was constructed for simultaneous detection of RNA methylation, METTL3/METTL14 protein and MazF protein. MoSe2-BiOI nanocomposite was prepared and considered as photoactive material, catalytic hairpin assembly strategy and in situ generation of electron donors catalyzed by polyaspartic acid-loaded alkaline phosphatase technique were employed as signal amplification. Under the optimum conditions, the detection ranges of methylated RNA, METTL3/METTL14 protein and MazF protein were 0.001-50 nM, 0.001-25 ng/µL, and 0.001-10 U/mL, respectively. The corresponding detection limits were 0.46 pM, 0.51 pg/µL and 0.42 U/µL with S/N = 3. In addition, the effect of drugs and composite pollutants on the activities of MazF proteins was assessed, proving the applicability of the developed method in the field of drug screening for MazF-related diseases. Moreover, the effects of pollutants on the activity of METTL3/METTL14 were also preliminarily explored, providing new information on pathogenic mechanism of pollutants.


Biosensing Techniques , RNA , RNA/genetics , Adenosine , Methyltransferases/genetics , Methyltransferases/metabolism , Methylation , Antibodies/metabolism
14.
Anal Chem ; 94(48): 16936-16944, 2022 12 06.
Article En | MEDLINE | ID: mdl-36416225

A photoelectrochemical (PEC) biosensor was established for histone deacetylase Sirt1 detection based on the polyaspartic acid (PASP)-mediated redox cycling amplification and Sirt1 catalysis deacetylation-triggered recognition of the deacetylated substrate peptide, using PASP as the recognition reagent. After BiVO4 was composited with gold nanoparticles and SnS2, the photoactivity of the composite was greatly enhanced due to the matched energy band structure. Under the catalysis of Sirt1 enzyme, the acetylated substrate peptide was deacetylated to obtain a positive peptide, which was recognized by negative PASP. In addition to the recognition function, PASP also played other triple roles. First, PASP interacted with the positive peptide to form a double-stranded structure, which led to the electrode interface changing from irregular to regular, resulting in an improved PEC response. Second, PASP was involved into redox cycle amplification due to its reduction to dehydroascorbic acid. Further, it was used for repeated preparation of ascorbic acid to provide electron donors. This process enhanced the PEC response. Third, based on the matched energy band with BiVO4, PASP effectively improved the photoactivity of BiVO4. With multiplex signal amplification, the PEC biosensor showed a wide linear range (1.83-1830 pM) and high detection sensitivity with a low detection limit of 0.732 pM (S/N = 3). The applicability of this method was evaluated by studying the effects of a known inhibitor of nicotinamide and the heavy metal ions of Cd2+ and Pb2+ on Sirt1 enzyme activity, and the results showed that this method not only provided a new platform for screening Sirt1 enzyme inhibitors but also provided new biomarkers for evaluating the ecotoxicological effects of environmental pollutants.


Biosensing Techniques , Metal Nanoparticles , Electrochemical Techniques/methods , Gold/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Oxidation-Reduction , Peptides , Sirtuin 1
15.
ACS Sens ; 7(10): 3116-3125, 2022 10 28.
Article En | MEDLINE | ID: mdl-36205635

Ten-eleven translocation 1 (TET1) protein has the potential to accelerate the oxygenation of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC); then the -CH2OH of 5hmC can further covalently react with -SH catalyzed by M.HhaI methyltransferase. A brand-new photoelectrochemical (PEC) detection technique for the TET1 protein was created in light of this. For this objective, the Bi2O3/Bi2S3 heterojunction was first prepared by a one-pot hydrothermal method and served for photosensitive materials. For further enhancing the photoactivity, Bi2O3/Bi2S3 was blended with MXene to form an energy band-matched structure, thus improving the migration kinetics of photogenerated carriers. For achieving a high sensitivity of detection, a DNA Walker incorporated with the nicking endonuclease (Nb.BbvCI enzyme)-assisted signal amplification strategy was presented to output exponential G-quadruplex fragments. Self-assembly of the free G-quadruplex sequence into a G-wire superstructure with the assistance of Mg2+ provided more loading sites for MB and amplified the PEC signal. The linear range of the biosensor was 0.1-10 µg/mL with a detection limit of 0.024 µg/mL (S/N = 3) for TET1 protein under optimal experimental conditions. The suitability of the proposed method was evaluated by inhibitor screening experiments and the influence of environmental degradation on the activity of TET1 protein.


Biosensing Techniques , G-Quadruplexes , Biosensing Techniques/methods
16.
Chemosphere ; 307(Pt 4): 136188, 2022 Nov.
Article En | MEDLINE | ID: mdl-36037955

Flowerlike Bi/BiOCl was prepared by one-pot hydrothermal method, where Bi(NO3)3 was used as Bi source, NiCl2 was used as employed as Cl source and co-catalyst, DMF was adopted as cosolvent and reducing agent. In the presence of NiCl2, the reduction of Bi(NO3)3 was accelerated. The prepared conditions were optimized. The prepared Bi/BiOCl showed high photocatalytic activity for rhodamine B (RhB) degradation within 200 s under visible light irradiation. The degradation efficiency and degradation reaction rate for Bi/BiOCl were 98.7% and 1.194 min -1, which was significantly better than that of BiOCl (6.6% and 0.0240 min -1). The improvement of photocatalytic activity was attributed to the successful in-situ formation of Bi metal in the sample, which greatly improved the visible light activity of BiOCl, increased the transfer rate of the photogenerated electron, and inhibited the recombination of photogenerated electron-hole pairs. The prepared Bi/BiOCl presented high cyclic stability and low Bi element leakage of 1.2 ng L-1. The conversion of N element in RhB was preliminarily studied, and the results showed that N element was effectively converted into ammonium. Moreover, the decreased toxicity after RhB degradation was investigated and confirmed by mung bean cultivation with RhB solution before and after degradation.


Ammonium Compounds , Environmental Pollutants , Water Pollutants, Chemical , Light , Reducing Agents , Technology , Water Pollutants, Chemical/radiation effects
17.
J Hazard Mater ; 436: 129146, 2022 08 15.
Article En | MEDLINE | ID: mdl-35594676

Given the improved photoactivity of Bi2S3 by MXene, an article photoelectrochemical biosensor was designed for 5-formyl-2'-deoxycytidine (5fdCTP) detection, where Bi2S3: MXene was selected as photoactive material, polydopamine was used as solid electron donor and 5fdCTP capture reagent, calcined ZIF-8(C-ZIF-8) was chosen as the artificial enzyme. With the catalyzed by C-ZIF-8, 4-chloro-1-naphthol was allegro oxidized by H2O2 to form the insoluble benzo-4-chlorohexadienone, and then deposited on the surface of the electrode, Resulting in a decrease of the PEC response. Under the optimum conditions, the sensor has a linear range of 0.001-200 nM and a detection limit of 0.51 pM (3σ). The suitability of the developed method was appraised by investigating the effect of antibiotics on 5fdCTP content in the genomic DNA of the roots of maize seedlings. As a new detection platform, the application of this approach can be expanded to investigative the impact of other pollutants on the content of 5fdCTP in plant or animal tissues, explore the feasibility of 5fdCTP as a new indicator for the ecotoxicological effect of pollutants, and the photoelectrochemical method as a new assessment technique for the ecotoxicological effects of pollutants.


Biosensing Techniques , Environmental Pollutants , Animals , Anti-Bacterial Agents , Biosensing Techniques/methods , Cytosine/analogs & derivatives , Electrochemical Techniques/methods , Hydrogen Peroxide/chemistry , Limit of Detection , Seedlings
18.
Talanta ; 234: 122697, 2021 Nov 01.
Article En | MEDLINE | ID: mdl-34364493

The endogenous epigenetic marker 5-formylcytosine (5 fC) is introduced by 5-methylcytosine (5 mC) oxidation under action of enzyme oxidation, and plays an important role in many life activities. Since the content of 5 fC in mammalian tissues and cells is very low, it is necessary to exploit a sensitive and specific detection method to further understand the function of 5 fC. In this work, a sensitively and selectively photoelectrochemical (PEC) biosensor was developed for 5-formyl-2'-deoxycytidine (5fdC) detection. CuBi2O4/ZnPc@WS2 was used as photoactive material, where the formed ternary heterojunction structure greatly enhanced the PEC response and increased the detection sensitivity. Positively charged polyethyleneimine (PEI) was employed as 5fdC recognition and capture unit, where the amine group on PEI specifically reacted with aldehyde group of 5fdC to form stable amide bond. 4-Carboxyphenylboronic acid (4-CPBA) was adopted as crosslinker for 5fdC and amino functionalized CuBi2O4 based on the covalent interaction between 1,3-diol bond on 5fdC and boric acid structure on 4-CPBA, and the covalent interaction between -COOH on 4-CPBA and -NH2 on amino functionalized CuBi2O4. On the basis of the positive synergistic effect of ZnPc and CuBi2O4 on improving the photoelectric performance of WS2, the separation of photo-generated electron-hole pairs in semiconductors were promoted, and the examination range was expanded from 0.1 to 500 nM, and the detection limit was 0.0483 nM (3σ). Based on the unique covalent reaction between -NH2 and -CHO, the PEC biosensor has excellent detection sensitivity, and can even separate 5fdC from 5-methylcytosine deoxyribonucleoside and 5-hydroxymethylcytosine deoxyribonucleoside. The effect of antibiotics and heavy metals on the 5fdC content in wheat tissue genome has also been further investigated using this sensor.


Biosensing Techniques , Electrochemical Techniques , Animals , Deoxycytidine/analogs & derivatives , Humans , Semiconductors
19.
J Hazard Mater ; 414: 125293, 2021 07 15.
Article En | MEDLINE | ID: mdl-33647617

A photoelectrochemical (PEC) biosensor was constructed for 5-formylcytosine (5fC) nucleotide detection based on Ag2S@WS2 photoactive material and FeVO4 catalytic signal quenching. After Ag2S@WS2 was modified onto the ITO substrate surface, 5fC recognition reagent of Au@4-amino3hydrazino5mercapto-1,2,4-triazol (Au@AHMT) was further modified through electrostatic adsorption. Afterwards, based on the specific chemical reaction between -NH2 and -CHO, 5fC can be selectively recognized and captured. Subsequently, the nanoenzyme of FeVO4 was recognized based on the specific reaction between the phosphate group of 5fC nucleotide and Fe3+. Under the catalysis of FeVO4, the 4-chloro-1-naphthol in the detection solution can be oxidized to generate a precipitate, which will be retained on the electrode surface to inhibit the PEC signal. The developed method presented a widely dynamic range from 0.1 to 400 nM. The detection limit was 0.062 nM (3σ). This method also showed good detection selectivity, reproducibility and stability. The applicability was verified by investigating 5fC content change in genomic DNA of rice tissues after incubated with heavy metals. Moreover, the inhibited influence of hydrochar towards heavy metals was also assessed.


Biosensing Techniques , Metals, Heavy , Oryza , Cytosine/analogs & derivatives , Electrochemical Techniques , Limit of Detection , Metals, Heavy/toxicity , Reproducibility of Results
20.
Mikrochim Acta ; 188(3): 68, 2021 02 05.
Article En | MEDLINE | ID: mdl-33547602

A novel electrochemiluminescence (ECL) biosensor was fabricated for miRNA-162a detection by using silver nanoclusters/molybdenum disulfide (AgNCs@MoS2) as an ECL material, peroxodisulfate (S2O82-) as a co-reactant, and semicarbazide (Sem) as a co-reaction accelerator. Firstly, hairpin probe Ha modified on AgNCs@MoS2/GCE was unfolded based on its hybridization with target microRNA. Then, the unfolded Ha can further be hybridized with another hairpin DNA of Hb on (AuNPs-semicarbazide)@Cu-MOF, resulting in the release of target microRNA, which further causes a cyclic hybridization. This creates more (AuNPs-semicarbazide)@Cu-MOF on the electrode surface, achieving cyclic hybridization signal amplification. Strikingly, due to the presence of Sem, accelerating the reduction of S2O82- and resulting in the generation of more oxidant intermediates of SO42-, the amount of excited states of Agincreases to further amplify the ECL signal. The biosensor exhibited high sensitivity with a low LOD of 1.067 fM, indicating that the introduction of co-reaction accelerators can provide an effective method for signal amplification. The applicability of this method was assessed by investigating the effect of Pb(II) ion on miRNA-162a expression level in maize seedling leaves. A novel electrochemiluminescence biosensor was fabricated for miRNA-162a detection by using silver nanoclusters/molybdenum disulfide as an ECL material, peroxodisulfate as a co-reactant, and semicarbazide as a co-reaction accelerator.


Biosensing Techniques/methods , Disulfides/chemistry , Luminescent Agents/chemistry , Metal Nanoparticles/chemistry , MicroRNAs/analysis , Molybdenum/chemistry , Nanocomposites/chemistry , Biosensing Techniques/instrumentation , Copper/chemistry , DNA/chemistry , DNA/genetics , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Immobilized Nucleic Acids/chemistry , Immobilized Nucleic Acids/genetics , Limit of Detection , Luminescence , Luminescent Measurements , Metal-Organic Frameworks/chemistry , MicroRNAs/genetics , Nucleic Acid Hybridization , Semicarbazides/chemistry , Silver/chemistry , Zea mays/chemistry
...